Comparing the relative stability of CERES, MISR and MODIS Radiances

Joseph Corbett¹ and Norman Loeb²

Joint CERES, GERB, and ScaRaB Earth Radiation Budget workshop Toulouse, France Oct 7-10 2014

¹SSAI, ²NASA Langley Research Center

Introduction

- 14 year record of Terra allows us to compare the long-term relative stability of the radiances from the different instruments.
- We can use this to get a sense of the robustness of trends (or lack of trends as the case may be) in the reflected radiation.
- CERES, MISR and MODIS all have independent calibration techniques so comparing them is a good test of each instruments calibration.
- We use the Single Scanner Footprint MISR (SSFM) dataset.
 - Combines CERES, MODIS and MISR radiances and scene information into a single dataset.

MODIS

- Moderate Resolution Imaging Spectrometer
- Scans across the satellite track
- 36 narrowband channels from ~0.4 microns to ~15 microns
- Spatial resolution between 250m and 1000m

MISR

Multi-angle Imaging Spectro-Radiometer

SSFM Dataset

- Takes the existing SSF dataset CERES radiance, flux and MODIS radiances, CERES team cloud information and adds the MISR radiances from the different angles.
- Narrowband radiances consist of the 4 MISR bands (446, 557, 672 and 868 nm) and 2 MODIS bands (650 and 858 nm, bands 1 and 2)
- Narrowband radiances are matched in time and space and averaged over the CERES footprint using the CERES point spread function.
- We have extended it from March 2000 to February 2014 using the CERES FM1 Edition 3A, MODIS Collections 4 and 5 and MISR Level1 Ellipsoid F03_0024 datasets.
- Processed every 16th day of data in order to get the orbit repeat cycle but limit the processing time and dataset size.
- This version is limited to CERES cross track viewing angles of <5°.

Method

- Average the 'y' and 'x' radiance in 5 Wm⁻²sr⁻¹ (3 Wm⁻²sr⁻¹ if 'x' is a NIR band) bins
 of the 'x' radiance → μ_x, μ_y
- Perform linear regressions between μ_x and μ_y for each year.
- Use that to estimate a 'Y' radiance as a function of the μ_x radiance.
- Repeat using the regression coefficients from the reference year (2002).
- Calculate the mean relative bias → (Y Y₂₀₀₂)/Y₂₀₀₂.
- Tells us how the 'y' radiance has changed with respect to the 'x' radiance over time.

Method

- A positive bias indicates increase in the 'y' radiance relative to the 'x' radiance and negative bias indicates a decrease in the 'y' radiance relative to the 'x' radiance.
- Important to note that as these are relative biases we can't use them to say which instrument is the more stable.

Conclusions

- Combining the CERES, MISR and MODIS products gives us a unique dataset that we can use to examine the relative stability of the instruments over time.
- Overall the trends in the relative drift between the CERES, MISR and MODIS radiances are low, less than 2.3 %/decade
- And except for MODIS they are less than 1%/decade
- The larger drifts between MODIS and CERES/MISR are mainly due to documented step changes in the calibration. We expect this to disappear in MODIS Collection 6.

MISR Blue ($Wm^{-2}sr^{-1}nm^{-1}$)